z-logo
Premium
El Apacentamiento de Ganado Influye en los Impactos del Cambio Climático sobre Humedales Efímeros
Author(s) -
PYKE CHRISTOPHER R.,
MARTY JAYMEE
Publication year - 2005
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1111/j.1523-1739.2005.00233.x
Subject(s) - exclosure , grazing , climate change , environmental science , ecology , ecosystem , wetland , conservation grazing , ephemeral key , geography , biology
  Climate change impacts depend in large part on land‐management decisions; interactions between global changes and local resource management, however, rarely have been quantified. We used a combination of experimental manipulations and simulation modeling to investigate the effects of interactions between cattle grazing and regional climate change on vernal pool communities. Data from a grazing exclosure study indicated that 3 years after the removal of grazing, ungrazed vernal pools dried an average of 50 days per year earlier than grazed control pools. Modeling showed that regional climate change could also alter vernal pool hydrology. Increased temperatures and winter precipitation were predicted to increase periods of inundation. We evaluated the ecological implications of interactions between grazing and climate change for branchiopods and the California tiger salamander ( Ambystoma californiense) at four sites spanning a latitudinal climate gradient. Grazing played an important role in maintaining the suitability of vernal pool hydrological conditions for fairy shrimp and salamander reproduction. The ecological importance of the interaction varied nonlinearly across the region. Our results show that grazing can confound hydrologic changes driven by climate change and play a critical role in maintaining the hydrologic suitability of vernal pools for endangered aquatic invertebrates and amphibians. These observations suggest an important limitation of impact assessments of climate change based on experiments in unmanaged ecosystems. The biophysical impacts of land management may be critical for understanding the vulnerability of ecological systems to climate change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here