z-logo
open-access-imgOpen Access
Recurrent interaction between the Norwegian Channel Ice Stream and terrestrial‐based ice across southwest Norway
Author(s) -
LARSEN EILIV,
SEJRUP HANS PETTER,
JANOCKO JURAJ,
LANDVIK JON Y.,
STALSBERG KNUT,
STEINSUND PER IVAR
Publication year - 2000
Publication title -
boreas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.95
H-Index - 74
eISSN - 1502-3885
pISSN - 0300-9483
DOI - 10.1111/j.1502-3885.2000.tb01445.x
Subject(s) - stadial , geology , sea ice , deglaciation , oceanography , ice stream , arctic ice pack , ice sheet , escarpment , fast ice , antarctic sea ice , physical geography , geomorphology , cryosphere , holocene , geography
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (∼200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here