z-logo
Premium
Trauma: physiology, pathophysiology, and clinical implications
Author(s) -
Muir William
Publication year - 2006
Publication title -
journal of veterinary emergency and critical care
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.886
H-Index - 47
eISSN - 1476-4431
pISSN - 1479-3261
DOI - 10.1111/j.1476-4431.2006.00185.x
Subject(s) - medicine , pathophysiology , hypovolemia , blood flow , hypothermia , physiology , homeostasis , blood pressure , anesthesia , pathology
Objective: To review the physiology, pathophysiology, and consequences of trauma. The therapeutic implications of hypovolemia, hypotension, hypothermia, tissue blood flow, oxygen delivery, and pain will be discussed. Data Sources: Human and veterinary clinical and research studies. Human and veterinary data synthesis: Trauma is defined as tissue injury that occurs more or less suddenly as a result of violence or accident and is responsible for initiating hyothalamic–pituitary–adrenal axis, immunologic and metabolic responses that are designed to restore homeostasis. Tissue injury, hemorrhage, pain, and fear are key components of any traumatic event. Trauma and blood loss result in centrally integrated autonomic‐mediated cardiovascular responses that are designed to increase heart rate, systemic vascular resistance, and maintain arterial blood pressure (ABP) to vital organs at the expense of blood flow to the gut and skeletal muscle. Severe trauma elicits exuberant physiologic, immunologic, and metabolic changes predisposing the animal to organ malfunction, a systemic inflammatory response, infection, and multiple organ dysfunctions. The combination of both central and local influences produces regional redistribution of blood flow among and within tissue beds which, when combined with impaired vascular reactivity, leads to maldistribution of blood flow to tissues predisposing to tissue hypoperfusion and impaired oxygen delivery and extraction. Gut blood flow and viability may serve as a sentinel of patient survival. These consequences are magnified in animals suffering from pain or that become hypothermic. Successful treatment of traumatized animals goes beyond the restoration of blood pressure and urine output, is dependent on a fundamental understanding of the pathophysiologic processes responsible for the animals current physical status, and incorporates the reduction of pain, stress, and the systemic inflammatory response and methods that restore microcirculatory blood flow and tissue oxygenation. Conclusions: Severe trauma is a multifaceted event and is exacerbated by hypothermia, pain, and stress. Therapeutic approaches must go beyond the simple restoration of vascular volume and ABP by maintaining tissue blood flow, restoring tissue oxygenation, and preventing systemic inflammation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here