z-logo
Premium
Long‐term effect of compost and inorganic fertilizer on activities of carbon‐cycle enzymes in aggregates of an intensively cultivated sandy loam
Author(s) -
YU H.Y.,
DING W.X.,
LUO J.F.,
DONNISON A.,
ZHANG J.B.
Publication year - 2012
Publication title -
soil use and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 81
eISSN - 1475-2743
pISSN - 0266-0032
DOI - 10.1111/j.1475-2743.2012.00415.x
Subject(s) - compost , fertilizer , loam , amendment , chemistry , agronomy , biochar , soil carbon , manure , organic fertilizer , soil water , environmental science , soil science , biology , organic chemistry , pyrolysis , political science , law
The activities of carbon‐cycle enzymes were measured in soil and aggregates to understand compost and inorganic fertilizer amendment effects on soil organic carbon accumulation in an intensively cultivated upland field. Soil samples were collected from a long‐term field experiment with seven treatments: compost, half‐compost N plus half‐fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK and no fertilizer control. The 18‐yr continuous application of compost increased organic C content in soil and three aggregate sizes by 72–124 and 78–234%, respectively, compared with the control. Fertilization also significantly increased organic C contents in soil, macroaggregates and the silt + clay fraction, but not in microaggregates. Compost application significantly reduced the specific activities of polyphenol oxidase (activity per unit organic C) in soil and three aggregate sizes compared with control, whereas fertilization had a much weaker effect. Compost amendment also significantly lowered the specific activities of invertase in macroaggregates and the silt + clay fraction, and this effect was more pronounced than the addition of fertilizer NPK. In contrast, inorganic fertilizer and compost application significantly increased the specific activities of cellobiohydrolase in soil, macroaggregates and microaggregates (but not in the silt + clay fraction), and xylosidase in microaggregates. The application of fertilizer NPK had a more pronounced effect than compost. We considered that the increase in organic C in compost‐amended soil was therefore probably associated with the accumulation of lignocellulose and sucrose in macroaggregates, lignocellulose and hemicellulose in microaggregates and lignin (its derivative) and nonstructural carbohydrates in the silt + clay fraction. However, the application of fertilizer NPK enhanced organic C probably due to an increase in the content of lignin (its derivative) and sucrose in macroaggregates and the silt + clay fraction. Therefore, the application of compost with high lignocellulose should be effective to increase soil organic C in the North China Plain.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here