Premium
Evaluation of phosphorus management practices in East Mediterranean altered wetland soils
Author(s) -
Barnea I.,
Litaor M. I.,
Shenker M.
Publication year - 2012
Publication title -
soil use and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 81
eISSN - 1475-2743
pISSN - 0266-0032
DOI - 10.1111/j.1475-2743.2011.00385.x
Subject(s) - fertilizer , agronomy , lysimeter , soil water , leaching (pedology) , crop rotation , sativum , human fertilization , environmental science , phosphorus , crop , chemistry , biology , soil science , organic chemistry
In this study, we re‐examined the common practice of intensive P fertilization in altered wetland soils even when soil test (Olsen‐P) indicates sufficient P levels (>10 mg/kg). We tested the effects of P fertilization on crop performance and P leaching in 36 lysimeters (1.5 m 3 ) filled with peat, marl or alluvial materials and compared a new bone‐char‐based fertilizer to the common superphosphate. The lysimeter experiment consisted of the two fertilizer types, two application rates and a typical crop rotation of setaria ( Setaria italica ), pea ( Pisum sativum ) and tomatoes ( Lycopersicon esculentum ). By the end of each crop rotation, the yield was evaluated relative to P‐fertilization rates and soil‐test P. P fertilization resulted in increased Olsen‐P, soil‐solution P and P loss through leachates and a slight quality yield advantage in pea and tomato with no increase in yield of any crop. P budget calculations showed that plant uptake was not affected by the amount or type of applied P. We concluded that P fertilizer application should be significantly reduced because of limited crop response and increased P concentrations in leachates that may increase P loss to waterways especially in the marl soils. The ABC Protector exhibited slow P release, but its environmental implications should be further studied.