Premium
Finite‐element Analysis of Footwear and Ground Interaction
Author(s) -
Sun Z.,
Howard D.,
Moatamedi M.
Publication year - 2005
Publication title -
strain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.477
H-Index - 47
eISSN - 1475-1305
pISSN - 0039-2103
DOI - 10.1111/j.1475-1305.2005.00205.x
Subject(s) - library science , stress (linguistics) , computer science , philosophy , linguistics
Military boots are designed to prevent the soft tissue and skeletal structure of the feet from damage under heavy usage. Good slip-resistant tread patterns of the outer-sole are vital to minimise the risk or severity of slipping under demanding conditions, most likely to result in accidents. However, boot design should also offer the customer flexibility, comfort, and shock absorption, be lightweight and be able to operate regardless of the ground surface texture and various weather conditions. The issue of footwear and ground interaction investigated in this study can be classified as a traditional stability problem. Solutions to these problems are often obtained using the theory of perfect plasticity. Therefore, elastic–perfectly plastic theory was adopted in this study and the Drucker-Prager (DP) material model was chosen to model the soil properties. Literature survey showed that little studies exist on the subject of interaction between foot and soft ground, in particular, using numerical modelling methods. However, there are numerous research works on some relevant domains, such as soil–tillage tool interaction, soil–wheel interaction and soil–structure interaction, etc. A three-dimensional finite-element (FE) analysis of a subsoiler cutting with pressurised air injection was performed by employing a DP harden material model without consideration of friction force by Araya and Gao [1]. Saliba [2] undertook elastic–viscoplastic FE modelling for tire/soil interaction and Mouazen and Nemenyi [3, 4] adopted a DP model for analysing soil–tillage tool interaction.