z-logo
Premium
Clinical data do not improve artificial neural network interpretation of myocardial perfusion scintigraphy
Author(s) -
Gjertsson Peter,
Johansson Lena,
Lomsky Milan,
Ohlsson Mattias,
Underwood Stephen Richard,
Edenbrandt Lars
Publication year - 2011
Publication title -
clinical physiology and functional imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.608
H-Index - 67
eISSN - 1475-097X
pISSN - 1475-0961
DOI - 10.1111/j.1475-097x.2011.01007.x
Subject(s) - medicine , receiver operating characteristic , coronary artery disease , myocardial infarction , artificial neural network , gold standard (test) , cardiology , radiology , percutaneous coronary intervention , artificial intelligence , computer science
Summary Artificial neural networks interpretation of myocardial perfusion scintigraphy (MPS) has so far been based on image data alone. Physicians reporting MPS often combine image and clinical data. The aim was to evaluate whether neural network interpretation would be improved by adding clinical data to image data. Four hundred and eighteen patients were used for training and 532 patients for testing the neural networks. First, the network was trained with image data alone and thereafter with image data in combination with clinical parameters (age, gender, previous infarction, percutaneous coronary intervention, coronary artery bypass grafting, typical chest pain, present smoker, hypertension, hyperlipidaemia, diabetes, peripheral vascular disease and positive family history). Expert interpretation was used as gold standard. Receiver operating characteristic (ROC) curves were calculated, and the ROC areas for the networks trained with and without clinical data were compared for the diagnosis of myocardial infarction and ischaemia. There was no statistically significant difference in ROC area for the diagnosis of myocardial infarction between the neural network trained with the combination of clinical and image data (95·8%) and with image data alone (95·2%). For the diagnosis of ischaemia, there was no statistically significant difference in ROC area between the neural network trained with the combination of clinical and image data (87·9%) and with image data alone (88·0%). Neural network interpretation of MPS is not improved when clinical data are added to perfusion and functional data. One reason for this could be that experts base their interpretations of MPS mainly on the images and to a lesser degree on clinical data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here