
Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination
Author(s) -
Gomes Nuno M. V.,
Ryder Oliver A.,
Houck Marlys L.,
Charter Suellen J.,
Walker William,
Forsyth Nicholas R.,
Austad Steven N.,
Venditti Chris,
Pagel Mark,
Shay Jerry W.,
Wright Woodring E.
Publication year - 2011
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/j.1474-9726.2011.00718.x
Subject(s) - telomerase , telomere , biology , context (archaeology) , longevity , genetics , senescence , phenotype , evolutionary biology , microbiology and biotechnology , gene , paleontology
Summary Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres/telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny‐based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co‐evolved with body size. Multiple independent times smaller, shorter‐lived species changed to having longer telomeres and expressing telomerase. Trade‐offs involving reducing the energetic/cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence of telomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human‐like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.