z-logo
open-access-imgOpen Access
Modulated microRNA expression during adult lifespan in Caenorhabditis elegans
Author(s) -
IbáñezVentoso Carolina,
Yang Maocheng,
Guo Suzhen,
Robins Harlan,
Padgett Richard W.,
Driscoll Monica
Publication year - 2006
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/j.1474-9726.2006.00210.x
Subject(s) - caenorhabditis elegans , biology , microrna , gene , genetics , translation (biology) , rna interference , model organism , caenorhabditis , longevity , gene expression , regulation of gene expression , messenger rna , rna
Summary MicroRNAs (miRNAs) are small, abundant transcripts that can bind partially homologous target messages to inhibit their translation in animal cells. miRNAs have been shown to affect a broad spectrum of biological activities, including developmental fate determination, cell signaling and oncogenesis. Little is known, however, of miRNA contributions to aging. We examined the expression of 114 identified Caenorhabditis elegans miRNAs during the adult lifespan and find that 34 miRNAs exhibit changes in expression during adulthood ( P ≤ 0.05), 31 with more than a twofold level change. The majority of age‐regulated miRNAs decline in relative abundance as animals grow older. Expression profiles of developmental timing regulators lin‐4 and let‐7 miRNAs, as well as conserved muscle miRNA miR‐1, show regulation during adulthood. We also used bioinformatic approaches to predict miRNA targets encoded in the C. elegans genome and we highlight candidate miRNA‐regulated genes among C. elegans genes previously shown to affect longevity, genes encoding insulin‐like ligands, and genes preferentially expressed in C. elegans muscle. Our observations identify miRNAs as potential modulators of age‐related decline and suggest a general reduction of message‐specific translational inhibition during aging, a previously undescribed feature of C. elegans aging. Since many C. elegans age‐regulated miRNAs are conserved across species, our observations identify candidate age‐regulating miRNAs in both nematodes and humans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here