z-logo
Premium
Antihypertensive effects of crude extracts from leaves of Echinodorus grandiflorus
Author(s) -
Lessa Marcos Adriano,
Araújo Cláudia Valéria,
Kaplan Maria Auxiliadora,
Pimenta Daniel,
Figueiredo Maria Raquel,
Tibiriçá Eduardo
Publication year - 2008
Publication title -
fundamental and clinical pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.655
H-Index - 73
eISSN - 1472-8206
pISSN - 0767-3981
DOI - 10.1111/j.1472-8206.2008.00565.x
Subject(s) - pharmacology , nitric oxide , medicine , antagonist , muscarinic acetylcholine receptor , receptor antagonist , mean arterial pressure , nitric oxide synthase , receptor , endocrinology , blood pressure , heart rate
The antihypertensive action of a crude ethanolic extract (EEEG) from leaves of Echinodorus grandiflorus (Alismataceae) was investigated in spontaneously hypertensive rats. The intraperitoneal injection of increasing doses of EEEG (300–1000 mg/kg) elicited dose‐dependent reductions in mean arterial pressure (MAP) that were paralleled by reductions of cardiac output and systemic vascular resistance, reaching the maximum of 23 ± 5%, 13 ± 3% and 18 ± 4%, respectively ( n  = 5, P  <   0.05). Comparable reductions of MAP were obtained upon i.v. administration of EEEG (3–100 mg/kg), reaching the maximum decrease of 51 ± 6% ( n  = 7; P  <   0.001). The blockade of nitric oxide synthesis significantly reduced the hypotension induced by i.v. administration of EEEG. Moreover, the pre‐treatment of the animals with a selective antagonist of cholinergic muscarinic receptors or of platelet‐activating factor (PAF) receptors partially blunted the cardiovascular effects of EEEG. The i.v. pre‐treatment with the selective B 2 bradykinin receptor antagonist HOE 140 or with indomethacin, an inhibitor of the enzyme cyclooxygenase, did not prevent the hypotensive effects induced by EEEG. Finally, the chronic oral treatment with EEEG presented a significant antihypertensive effect that was comparable to that of reference antihypertensive drugs currently used to treat arterial hypertension. It is concluded that EEEG elicits significant acute antihypertensive effects through the release of nitric oxide and the stimulation of cholinergic muscarinic and PAF receptors. Moreover, our results suggest that EEEG may be appropriate to chronic oral treatment of arterial hypertension.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here