Premium
Genetic diversity and amplification of different clostridial [FeFe] hydrogenases by group‐specific degenerate primers
Author(s) -
Calusinska M.,
Joris B.,
Wilmotte A.
Publication year - 2011
Publication title -
letters in applied microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.698
H-Index - 110
eISSN - 1472-765X
pISSN - 0266-8254
DOI - 10.1111/j.1472-765x.2011.03135.x
Subject(s) - hydrogenase , biology , gene , phylogenetic tree , 16s ribosomal rna , clostridium , genetic diversity , genetics , gene cluster , microbiology and biotechnology , genome , bacteria , population , demography , sociology
Aims: The aim of this study was to explore and characterize the genetic diversity of [FeFe] hydrogenases in a representative set of strains from Clostridium sp. and to reveal the existence of neither yet detected nor characterized [FeFe] hydrogenases in hydrogen‐producing strains. Methods and Results: The genomes of 57 Clostridium strains (34 different genotypic species), representing six phylogenetic clusters based on their 16S rRNA sequence analysis (cluster I, III, XIa, XIb, XIV and XVIII), were screened for different [FeFe] hydrogenases. Based on the obtained alignments, ten pairs of [FeFe] hydrogenase cluster‐specific degenerate primers were newly designed. Ten Clostridium strains were screened by PCRs to assess the specificity of the primers designed and to examine the genetic diversity of [FeFe] hydrogenases. Using this approach, a diversity of hydrogenase genes was discovered in several species previously shown to produce hydrogen in bioreactors: Clostridium sartagoforme , Clostridium felsineum , Clostridium roseum and Clostridium pasteurianum . Conclusions: The newly designed [FeFe] hydrogenase cluster‐specific primers, targeting the cluster‐conserved regions, allow for a direct amplification of a specific hydrogenase gene from the species of interest. Significance and Impact of the Study: Using this strategy for a screening of different Clostridium ssp. will provide new insights into the diversity of hydrogenase genes and should be a first step to study a complex hydrogen metabolism of this genus.