Premium
Garnet‐filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt
Author(s) -
LEPOT K.,
PHILIPPOT P.,
BENZERARA K.,
WANG G.Y.
Publication year - 2009
Publication title -
geobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.859
H-Index - 72
eISSN - 1472-4669
pISSN - 1472-4677
DOI - 10.1111/j.1472-4669.2009.00208.x
Subject(s) - kerogen , archean , organic matter , dissolution , biomineralization , geology , mineralogy , mineral , basalt , matrix (chemical analysis) , chemistry , materials science , geochemistry , paleontology , source rock , composite material , organic chemistry , structural basin
The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer‐sized filaments of iron‐ and calcium‐rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7‐billion‐year‐old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser‐Raman micro‐spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron‐mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic‐mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.