
The evolution and phylogenetic placement of invasive Australian Acacia species
Author(s) -
Miller Joseph T.,
Murphy Daniel J.,
Brown Gillian K.,
Richardson David M.,
GonzálezOrozco Carlos E.
Publication year - 2011
Publication title -
diversity and distributions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.918
H-Index - 118
eISSN - 1472-4642
pISSN - 1366-9516
DOI - 10.1111/j.1472-4642.2011.00780.x
Subject(s) - acacia , biology , phylogenetic tree , phylogenetics , invasive species , mimosoideae , introduced species , genus , monophyly , ecology , subfamily , clade , biochemistry , gene
Aim Acacia is the largest genus of plants in Australia with over 1000 species. A subset of these species is invasive in many parts of the world including Africa, the Americas, Europe, the Middle East, Asia and the Pacific region. We investigate the phylogenetic relationships of the invasive species in relation to the genus as a whole. This will provide a framework for studying the evolution of traits that make Acacia species such successful invaders and could assist in screening other species for invasive potential. Location Australia and global. Methods We sequenced four plastid and two nuclear DNA regions for 110 Australian Acacia species, including 16 species that have large invasive ranges outside Australia. A Bayesian phylogenetic tree was generated to define the major lineages of Acacia and to determine the phylogenetic placement of the invasive species. Results Invasive Acacia species do not form a monophyletic group but do form small clusters throughout the phylogeny. There are no taxonomic characters that uniquely describe the invasive Acacia species. Main conclusions The legume subfamily Mimosoideae has a high percentage of invasive species and the Australian Acacia species have the highest rate of all the legumes. There is some evidence of phylogenetic clumping of invasive species of Acacia in the limited sampling presented here. This phylogeny provides a framework for further testing of the evolution of traits associated with invasiveness in Acacia .