z-logo
open-access-imgOpen Access
Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands
Author(s) -
Le Roux Johannes J.,
Wieczorek Ania M.,
Meyer JeanYves
Publication year - 2008
Publication title -
diversity and distributions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.918
H-Index - 118
eISSN - 1472-4642
pISSN - 1366-9516
DOI - 10.1111/j.1472-4642.2008.00504.x
Subject(s) - biology , genetic diversity , upgma , population , genetic structure , population bottleneck , ecology , mantel test , microsatellite , allele , demography , genetics , sociology , gene
Aim  This study investigates the amount and distribution of genetic variation within and among populations of the highly invasive tree, Miconia calvescens (Melastomataceae; hereafter miconia), in tropical island habitats that are differently impacted (distribution and spread) by this weed. Location  Invasive populations were included from northern and southern Pacific islands including the Hawaiian Islands (Hawaii, Kauai and Maui), Marquesas Islands (Nuku Hiva), Society Islands (Tahiti, Tahaa, Moorea, Raiatea) and New Caledonia. Methods  We used 9 codominant microsatellite and 77 highly variable dominant intersimple sequence repeat markers (ISSRs) to characterize and compare genetic diversity among and within invasive miconia populations. For the codominant microsatellite data we calculated standard population genetic estimates (heterozygosity, number of alleles, inbreeding coefficients, etc.) and described population genetic structure using AMOVA, Mantel tests (to test for isolation by distance), unweighted pair‐group method with arithmetic averages (UPGMA) cluster analysis and principal components analysis (PCA). We also tested for the presence of a population bottleneck and used a Bayesian analysis of population structure in combination with individual assignment tests. For the dominant ISSR data we used AMOVA, PCA, upgma and a Bayesian approach to investigate population genetic structure. Results  Both markers types showed little to no genetic differentiation among miconia populations from northern and southern Pacific hemispheres (AMOVA: microsatellite, 3%; ISSR, 0%). Bayesian and frequency‐based analysis also failed to support geographical genetic structure, confirming considerable low genetic differentiation throughout the Pacific. Molecular data furthermore showed that highly successful miconia populations throughout the Pacific are currently undergoing severe bottlenecks and high levels of inbreeding ( f  = 0.91, ISSR; F IS  = 0.27, microsatellite). Main conclusions  The lack of population genetic structure is indicative of similar geographical sources for both hemispheres and small founding populations. Differences in invasive spread and distribution among Pacific islands are most likely the result of differences in introduction dates to different islands and their accompanying lag phases. Miconia has been introduced to relatively few tropical islands in the Pacific, and the accidental introduction of a few or even a single seed into favourable habitats could lead to high invasive success.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here