z-logo
Premium
Distribution of RGS9‐2 in neurons of the mouse striatum
Author(s) -
Mancuso James J.,
Qian Yan,
Long Cheng,
Wu GangYi,
Wensel Theodore G.
Publication year - 2010
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.2009.06488.x
Subject(s) - microbiology and biotechnology , biology , striatum , g protein , subcellular localization , membrane protein , cytoplasm , biochemistry , chemistry , signal transduction , neuroscience , membrane , dopamine
J. Neurochem. (2010) 112 , 651–661. Abstract Regulators of G protein signaling (RGS) proteins negatively modulate G protein‐coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down‐regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9‐2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9‐2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non‐ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G β5 . It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9‐2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9‐2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9‐2 seems unlikely.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here