Premium
Characterization of PINK1 processing, stability, and subcellular localization
Author(s) -
Lin William,
Kang Un Jung
Publication year - 2008
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.2008.05398.x
Subject(s) - pink1 , mitochondrion , microbiology and biotechnology , biology , cytosol , mitochondrial carrier , subcellular localization , dnaja3 , immunoprecipitation , biochemistry , mitochondrial fusion , mitophagy , enzyme , mitochondrial dna , cytoplasm , gene , autophagy , apoptosis , escherichia coli , bacterial outer membrane
Mutations found in PTEN‐induced putative kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase of unknown function, have been linked to autosomal recessive Parkinson’s disease. It is suggested that mutations can cause a loss of PINK1 kinase activity and eventually lead to mitochondrial dysfunction. In this report, we examined the subcellular localization of PINK1 and the dynamic kinetics of PINK1 processing and degradation. We also identified cytosolic chaperone heat‐shock protein 90 (Hsp90) as an interacting protein of PINK1 by PINK1 co‐immunoprecipitation. Immunofluorescence of PINK1 protein and mitochondrial isolation show that the precursor form of PINK1 translocates to the mitochondria and is processed into two cleaved forms of PINK1, which in turn localize more to the cytosolic than mitochondrial fraction. The cleavage does not occur and the uncleaved precursor stays associated with the mitochondria when the mitochondrial membrane potential is disrupted. Metabolic labeling analyses show that the PINK1 processing is rapid and the levels of cleaved forms are tightly regulated. Furthermore, cleaved forms of PINK1 are stabilized by Hsp90 interaction as the loss of Hsp90 activity decreases PINK1 level after mitochondrial processing. Lastly, we also find that cleaved forms of PINK1 are degraded by the proteasome, which is uncommon for mitochondrial proteins. Our findings support a dual subcellular localization, implying that PINK1 can reside in the mitochondria and the cytosol. This raises intriguing functional roles that bridge these two cellular compartments.