Premium
Alzheimer‐like changes in protein kinase B and glycogen synthase kinase‐3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway
Author(s) -
SalkovicPetrisic Melita,
Tribl Florian,
Schmidt Manuela,
Hoyer Siegfried,
Riederer Peter
Publication year - 2006
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.2005.03637.x
Subject(s) - gsk 3 , hippocampus , glycogen synthase , gsk3b , kinase , neuroscience , biology , protein kinase a , microbiology and biotechnology , chemistry , endocrinology , glycogen , medicine
The insulin‐resistant brain state is related to late‐onset sporadic Alzheimer's disease, and alterations in the insulin receptor (IR) and its downstream phosphatidylinositol‐3 kinase signalling pathway have been found in human brain. These findings have not been confirmed in an experimental model related to sporadic Alzheimer's disease, for example rats showing a neuronal IR deficit subsequent to intracerebroventricular (i.c.v.) treatment with streptozotocin (STZ). In this study, western blot analysis performed 1 month after i.c.v. injection of STZ showed an increase of 63% in the level of phosphorylated glycogen synthase kinase‐3α/β (pGSK‐3α/β) protein in the rat hippocampus, whereas the levels of the unphosphorylated form (GSK‐3α/β) and protein kinase B (Akt/PKB) remained unchanged. Three months after STZ treatment, pGSK‐3α/β and Akt/PKB levels tended to decrease (by 8 and 9% respectively). The changes were region specific, as a different pattern was found in frontal cortex. Structural alterations were also found, characterized by β‐amyloid peptide‐like aggregates in brain capillaries of rats treated with STZ. Similar neurochemical changes and cognitive deficits were recorded in rats treated with i.c.v. 5‐thio‐ d ‐glucose, a blocker of glucose transporter (GLUT)2, a transporter that is probably involved in brain glucose sensing. The IR signalling cascade alteration and its consequences in rats treated with STZ are similar to those found in humans with sporadic Alzheimer's disease, and our results suggest a role for GLUT2 in Alzheimer's pathophysiology.