Premium
Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen‐activated protein kinases in the rat locus coeruleus
Author(s) -
Hebert Meleik A.,
Serova Lidia I.,
Sabban Esther L.
Publication year - 2005
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.2005.03386.x
Subject(s) - creb , phosphorylation , kinase , p38 mitogen activated protein kinases , mitogen activated protein kinase , transcription factor , hyperphosphorylation , locus coeruleus , protein kinase a , microbiology and biotechnology , biology , mitogen activated protein kinase 3 , signal transduction , chemistry , biochemistry , nucleus , gene
The locus coeruleus (LC) is a critical stress‐responsive location that mediates many of the responses to stress. We used immunoblotting and immunohistochemistry to investigate changes in induction and phosphorylation of several transcription factors and kinases in the LC that may mediate the stress‐triggered induction of tyrosine hydroxylase (TH) transcription. Rats were exposed to single or repeated immobilization stress (IMO) for brief (5 min), intermediate (30 min) or sustained (2 h) duration. Single IMO elicited rapid induction of c‐Fos and phosphorylation of cyclic AMP response element‐binding protein (CREB) without changing the expression of early growth response (Egr)1, Fos‐related antigen (Fra)‐2 or phosphorylated activating transcription factor‐2. Repeated IMO triggered increased phosphorylation and levels of CREB along with transient induction of c‐Fos and increased Fra‐2 expression. Several mitogen‐activated protein kinases were activated by repeated IMO, shown by increased phosphorylation of p38, c‐Jun N‐terminal kinase (JNK)1/2/3 and extracellular signal‐regulated kinase (ERK1/2). ERK1 was the major isoform expressed, and ERK2 the predominant isoform phosphorylated. Repeated IMO elicited hyperphosphorylation of ERK1/2 selectively in TH immunoreactive neurons, with substantial nuclear localization. These distinct alterations in transcriptional pathways following repeated compared with single stress may be involved in mediating long‐lasting neuronal remodeling and are implicated in the mechanisms by which acute beneficial responses to stress are converted into prolonged adaptive or maladaptive responses.