Premium
Involvement of gangliosides in proliferation of immortalized neural progenitor cells
Author(s) -
Yanagisawa Makoto,
Liour Sean S.,
Yu Robert K.
Publication year - 2004
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.2004.02750.x
Subject(s) - progenitor cell , microbiology and biotechnology , neural stem cell , neurosphere , epidermal growth factor , biology , progenitor , transfection , mapk/erk pathway , cell growth , neural cell adhesion molecule , cell culture , cellular differentiation , signal transduction , stem cell , cell , adult stem cell , biochemistry , cell adhesion , gene , genetics
The CNS consists of neuronal and glial cells generated from common neural progenitor cells during development. Cellular events for neural progenitor cells, such as proliferation and differentiation, are regulated by multiple intrinsic and extrinsic cell signals. Although much is known on the importance of the proteinous factors in regulating the fate of neural progenitor cells, the involvement of other molecules such as gangliosides, sialic acid‐containing glycosphingolipids, remains to be clarified. To elucidate the biological functions of gangliosides in neural progenitor cells, we transfected an immortalized neural progenitor cell line, C17.2, which does not express GD3 ganglioside, with a fusion protein of GD3‐synthase (ST‐II) and enhanced green fluorescent protein (ST‐II‐EGFP). Analysis of the ST‐II transfectants revealed the ectopic expression of b‐ and c‐series gangliosides. In the ST‐II transfectants, proliferation induced by epidermal growth factor (EGF) was severely retarded. EGF‐induced proliferation of C17.2 cells was dependent on the Ras‐mitogen‐activated protein kinase (Ras‐MAPK) pathway, and the EGF‐induced activation of this pathway was significantly repressed in the transfectants. Thus, ST‐II overexpression retarded proliferation of C17.2 cells via repression of the Ras‐MAPK pathway. The result supports the concept that gangliosides may play an important role in regulating the proliferation of neural progenitor cells.