z-logo
Premium
Changes in Polyamine Levels in Rat Brain After Systemic Kainic Acid Administration: Relationship to Convulsant Activity and Brain Damage
Author(s) -
Vera N.,
Artigas F.,
Serratosa J.,
Martínez E.
Publication year - 1991
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.1991.tb02091.x
Subject(s) - putrescine , convulsant , kainic acid , spermine , polyamine , spermidine , ornithine decarboxylase , neurotoxicity , medicine , endocrinology , chemistry , pharmacology , systemic administration , toxicity , biology , biochemistry , glutamate receptor , receptor , microbiology and biotechnology , in vivo , enzyme
We have examined the effects of systemic kainic acid (KA) administration (9 mg/kg, i.p.) on rat behavior, brain damage, and polyamine levels and the action of the specific ornithine decarboxylase inhibitor α‐difluoromethylornithine (DFMO) on these effects. KA elicited convulsant activity in 63% of the animals. In the acute convulsant phase (1–3 h after KA), a rapid decline (−39% at 3 h) of spermidine content in frontal cortex was found. After the acute convulsant phase, levels of hippocampal spermidine and spermine were reduced (−70 and −66%, respectively, at 8 h). A dramatic increase of putrescine content (681, 1,382, and 336% at 8h, 24h, and 9 days, respectively, after KA) was found, associated with histological signs of cortical brain damage (ischemia and necrosis). There was a close relationship between the concentration of putrescine and signs of delayed toxicity (body weight losses) 24 h and 9 days after KA. DFMO partially antagonized the convulsant activity and reduced the increased putrescine levels to ∼50% of values in KA‐treated animals at 24 h but did not change the pattern of histological damage. The role of polyamines in the early and late phases of KA‐induced neurotoxicity is discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here