Premium
Decrease of Atrial Natriuretic Peptide Content in Rat Superior Cervical Sympathetic Ganglion After Denervation and Axotomy
Author(s) -
Nagata Yutaka,
Ebisu Hiroshi,
Tamaru Masao,
Fujita Kimikazu,
Koide Tadashi
Publication year - 1989
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.1989.tb09210.x
Subject(s) - medicine , endocrinology , denervation , superior cervical ganglion , atrial natriuretic peptide , axotomy , cervical ganglia , acetylcholine , chemistry , choline acetyltransferase , biology , central nervous system
We found atrial natriuretic peptide (ANP), known as a humoral factor in regulating body fluid volume and blood pressure, in considerable quantities in rat superior cervical sympathetic ganglion (SCG) by radioimmunoassay after separation with reverse‐phase HPLC. Although the ANP content of the immature rat 1 week after birth was low, it doubled at 2 weeks and then increased gradually, until it reached the adult level. Denervation caused a rapid decrease in the ANP content to half of the intact SCG level after 3 h, which then fell to 10% of the control value on day 2 after operation. The time course of ANP content reduction after denervation was similar but rather faster than that of activity of the acetyl‐choline‐synthesizing enzyme, choline acetyltransferase, an observation suggesting that ANP may partly contribute to cholinergic synaptic transmission. On the other hand, axotomy produced a rather slower decrease in the ANP content than did denervation. Enucleation and sialoadenectomy also caused a considerable reduction of the ANP content. Thus, part of the ANP found in the ganglion is apparently transported from sympathetically innervated extraganglionic organs via retrograde axoplasmic flow.