z-logo
Premium
Increase in Kynurenic Acid in Huntington's Disease Motor Cortex
Author(s) -
Connick J. H.,
Carlà V.,
Moroni F.,
Stone T. W.
Publication year - 1989
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/j.1471-4159.1989.tb02552.x
Subject(s) - kynurenic acid , quinolinic acid , neuroscience , globus pallidus , huntington's disease , chorea , neurodegeneration , caudate nucleus , medicine , endocrinology , biology , basal ganglia , glutamate receptor , disease , central nervous system , biochemistry , amino acid , tryptophan , receptor
Huntington's disease is a neurological disorder characterised by a progressive chorea and dementia. Recent evidence has suggested that dysfunction involving endogenous excitatory amino acids may be important in the pathogenesis of this disease. Following the recent demonstration that kynurenic acid is present in the brain, we examined the levels in various areas of brain from patients who died with Huntington's disease and from age/sex‐matched controls. Blocks (100–500 mg) of cortex (Brodmann's areas 4 and 10) and caudate nucleus and globus pallidus (lateral and medial parts) were obtained from the Cambridge Brain Bank. The tissue was then processed for the extraction and analysis of kynurenic acid. Whereas no differences in the content of kynurenic acid were observed in the caudate nucleus, lateral or medial globus pallidus, or prefrontal cortex (area 10) between controls' brains and those from patients who died with Huntington's disease, there was a 94% ( p < 0.01; n = 5) increase in the kynurenic acid content in the motor cortex (area 4) from Huntington's disease brains, relative to those of controls. Some time ago we suggested that a subtle change in the relative concentrations of quinolinic and kynurenic acids might be important in the pathogenesis of neurodegeneration. It is possible that the observation of raised kynurenic acid levels supports this supposition. Further work is now in progress to determine whether the change in kynurenic acid is a primary effect or a compensatory response to an increase in excitatory activity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here