Premium
Bone density and size in ambulatory children with cerebral palsy
Author(s) -
WREN TISHYA AL,
LEE DAVID C,
KAY ROBERT M,
DOREY FREDERICK J,
GILSANZ VICENTE
Publication year - 2011
Publication title -
developmental medicine and child neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.658
H-Index - 143
eISSN - 1469-8749
pISSN - 0012-1622
DOI - 10.1111/j.1469-8749.2010.03852.x
Subject(s) - gross motor function classification system , cerebral palsy , medicine , tibia , diplegia , bone density , ambulatory , bone mineral , osteoporosis , physical therapy , surgery
Aim To examine the relation of axial and appendicular bone properties in ambulatory children with cerebral palsy (CP) to functional (Gross Motor Function Classification System [GMFCS]) level. Method Quantitative computed tomography measurements were compared among 37 children with CP (12 children in GMFCS level I, five in level II, 18 in level III, two in level IV; five with hemiplegia, 23 with diplegia, two with triplegia, seven with quadriplegia; mean age 9y 4mo, SD 1y 6mo; 18 males, 19 females) and 37 children in a comparison group (same age and sex distributions). Linear regression was used to evaluate differences in volumetric cancellous bone density (vBMD) and geometric properties of the L3 vertebra and tibia, adjusting for height, weight, and sex as covariates. Results The comparison group had larger vertebrae than the children with CP ( p =0.02) owing to smaller vertebral size in GMFCS levels III and IV, but there was no difference in vertebral vBMD ( p =0.49). In the tibia, bone volumetric density ( p =0.09) and size ( p =0.02) decreased with increasing GMFCS level. GMFCS level had a greater effect on bone size in females than in males ( p <0.07). Interpretation Children with CP of all levels may have less bone in their tibias, whereas spine deficits differentially affect more involved children. Because even small bone deficits may manifest as osteoporosis later in life, it is important to study bone acquisition in all children with CP.