z-logo
Premium
Models of long‐distance transport: how is carrier‐dependent auxin transport regulated in the stem?
Author(s) -
Renton Michael,
Hanan Jim,
Ferguson Brett J.,
Beveridge Christine A.
Publication year - 2012
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/j.1469-8137.2012.04093.x
Subject(s) - auxin , polar auxin transport , microbiology and biotechnology , gravitropism , biophysics , biology , pisum , chemistry , botany , biochemistry , arabidopsis , mutant , gene
Summary• This paper presents two models of carrier‐dependent long‐distance auxin transport in stems that represent the process at different scales. • A simple compartment model using a single constant auxin transfer rate produced similar data to those observed in biological experiments. The effects of different underlying biological assumptions were tested in a more detailed model representing cellular and intracellular processes that enabled discussion of different patterns of carrier‐dependent auxin transport and signalling. • The output that best fits the biological data is produced by a model where polar auxin transport is not limited by the number of transporters/carriers and hence supports biological data showing that stems have considerable excess capacity to transport auxin. • All results support the conclusion that auxin depletion following apical decapitation in pea ( Pisum sativum ) occurs too slowly to be the initial cause of bud outgrowth. Consequently, changes in auxin content in the main stem and changes in polar auxin transport/carrier abundance in the main stem are not correlated with axillary bud outgrowth.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here