z-logo
Premium
Hydraulic constraints limit height growth in trees at high altitude
Author(s) -
Petit Giai,
Anfodillo Tommaso,
Carraro Vinicio,
Grani Francesco,
Carrer Marco
Publication year - 2011
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/j.1469-8137.2010.03455.x
Subject(s) - xylem , tracheid , effects of high altitude on humans , altitude (triangle) , hydraulic conductivity , apex (geometry) , elongation , biology , botany , shoot , woody plant , horticulture , anatomy , ecology , materials science , mathematics , geometry , soil water , ultimate tensile strength , metallurgy
Summary• Low temperatures limit the fixation of photosynthates and xylogenesis. Here, we hypothesized that reduced longitudinal growth in trees at high altitude is related to the lower hydraulic efficiency of the transport system. • Apical buds of Norway spruce ( Picea abies ) trees at high and low elevation were heated during 2006 and 2007. At the end of the experiment, trees were felled. Longitudinal increments and tracheid lumen areas were measured along the stem. Apical hydraulic conductivity ( k ) was estimated from anatomical data. • Before heating, high‐altitude trees showed fewer ( P  =   0.002) and smaller ( P  =   0.008) apical conduits, and therefore reduced k ( P  =   0.016) and stem elongation ( P  <   0.0001), in comparison with trees at low elevation. After 2 yr of heating, k increased at both high ( P  =   0.014) and low ( P  =   0.047) elevation. Only high‐altitude trees showed increased stem elongation, which reached the same magnitude as that of controls at low elevation ( P  =   0.735). Heating around the apical shoots did not appear to induce significant changes in conduit dimension along the rest of the stem. • The total number and size of xylem elements at the stem apex are strongly constrained by low temperatures. Trees at high altitude are therefore prevented from building up an efficient transport system, and their reduced longitudinal growth reflects strong hydraulic limitations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here