Premium
Observations on the physiology and integumentary structure of the Antarctic pycnogonid Decolopoda austratis
Author(s) -
DAVENPORT J.,
BLACKSTOCK N.,
DAVIES D. A.,
YARRINGTON M.
Publication year - 1987
Publication title -
journal of zoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.915
H-Index - 96
eISSN - 1469-7998
pISSN - 0952-8369
DOI - 10.1111/j.1469-7998.1987.tb01545.x
Subject(s) - integumentary system , cuticle (hair) , biology , appendage , anatomy , integument , biophysics , diffusion , body surface , geometry , physics , mathematics , thermodynamics
The giant Antarctic pycnogonid Decolopoda australis Eights takes up oxygen by diffusion across the integument, particularly of the legs. The circulatory system is feeble and haemolymph pressure changes are induced by leg movements during locomotion rather than by cardiac action. Heart rate is about30–40 beats min ‐1 between 1 and 5 °C; it becomes irregular above 5 °C and ceases (reversibly) at6–7 °C. The integumentary structure appears to facilitate gaseous exchange. Although the cuticle (c. 200 μm thick) is chitinous, it is perforated (over 35% of the internal surface) by circular/ ellipsoidal tissue‐filled pits which are separated from the external environment by thin layers of chitinous cuticle no more than4–6 μm thick. The pits occur in all parts of the body and appendages (except arthrodial membranes). It is suggested that the primary function of the tissue within the pits is to form a route for gaseous diffusion, which bypasses the relatively thick impermeable chitinous layers of the rest of the cuticle. Calculations suggest that the pits reduce resistance to gaseous diffusion by about 90%. To function as a respiratory surface, the general body surface has to be kept clean. The cleaning action of the ovigers appears to be effective, except in the regions between the contiguous lateral processes of the body where detrital material accumulates.