Premium
Developmental mechanisms facilitating the evolution of bills and quills
Author(s) -
Schneider Richard A.
Publication year - 2005
Publication title -
journal of anatomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 118
eISSN - 1469-7580
pISSN - 0021-8782
DOI - 10.1111/j.1469-7580.2005.00471.x
Subject(s) - biology , feather , quail , evolutionary biology , mesenchyme , biological evolution , developmental plasticity , phenotypic plasticity , phenotype , parallel evolution , zoology , gene , phylogenetics , ecology , plasticity , genetics , embryo , physics , thermodynamics
Beaks and feathers epitomize inimitable avian traits. Within individuals and across species there exists astounding diversity in the size, shape, arrangement, and colour of beaks and feathers in association with various functional adaptations. What has enabled the concomitantly divergent evolution of beaks and feathers? The common denominator may lie in their developmental programmes. As revealed through recent transplant experiments using quail and duck embryos, the developmental programme for each structure utilizes mesenchyme as a dominant source of species‐specific patterning information, acts as a module of closely coupled molecular and histogenic events, and operates with a high degree of spatial and temporal plasticity. By synergizing these three features, the developmental programmes underlying beaks and feathers likely have the essential potential to react spontaneously to novel conditions and new gene functions, and as a consequence are well equipped to generate and accommodate innovative phenotypes during the course of evolution.