Premium
Preface
Author(s) -
Demailouglas Alison,
Leng Gareth,
Ludwig Mike,
Russell John A.
Publication year - 2000
Publication title -
experimental physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.925
H-Index - 101
eISSN - 1469-445X
pISSN - 0958-0670
DOI - 10.1111/j.1469-445x.2000.tb00001.x
Subject(s) - citation , rothschild , library science , classics , art history , history , computer science , law , political science
Some of the challenges the pharmaceutical industry faces in the current research and development processes are: (1) a lengthy process that takes, on average, approximately 11 years from target identification to the development of a new medicine; (2) an ever increasing costly process; (3) an inefficient process where too many drugs fail before they reach the market because of a lack of efficacy or unacceptable toxicity, as well as postmarketing withdrawal due to rare serious adverse events; (4) drug--drug interactions or toxicity is not uncommon; (5) the increasing difficulty in identifying novel drug targets; and (6) the mode of action for many compounds is often unknown. This is a depressing reality. Where are the improvements in both quality and efficiency often claimed in the drug development process? Why haven’t the advances in science and technology made a greater impact? How can improvements in the process reduce the already high cost of drug development generally? To address some of these issues, the pharmaceutical industry is actively exploring the relationships between human genetics and drug responsiveness, susceptibility to disease, and disease severity. While research approaches and emphases may vary from company to company, the overarching goal of the industry is largely consistent: to discover and develop new medicines based on an improved understanding of patient response to drugs (positive or negative) and of diseases etiology. Pharmacogenomic (PGx) methods are aimed at determining the contribution of genetic differences in ADME, drug target, and disease genes to drug response, thereby improving the safety and efficacy of drug therapy through use of genetically guided treatments, an approach called personalized medicine. Personalized medicine is both one of the newest disciplines of medicine currently being used and very much an ongoing work in progress. Many drug companies have incorporated genetic research, such as the collection of genetic samples, into their drug development programs. And while only a few examples of true success stories have emerged during the past few years of research, it is clear that the current landscape is driving us toward a more widespread acceptance of personalized medicine. Currently many questions arise regarding the appropriate implementation of this technology: how can the industry go about delivering true business value while recognizing that the ability to address patients’ demand for safer and more efficient novel drugs might be met by engaging this technology more fully. There are