Premium
Metabolic depression in animals: physiological perspectives and biochemical generalizations
Author(s) -
GUPPY MICHAEL,
WITHERS PHILIP
Publication year - 1999
Publication title -
biological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.993
H-Index - 165
eISSN - 1469-185X
pISSN - 1464-7931
DOI - 10.1111/j.1469-185x.1999.tb00180.x
Subject(s) - anaerobic exercise , basal metabolic rate , biology , medicine , depression (economics) , endocrinology , physiology , economics , macroeconomics
ABSTRACT Depression of metabolic rate has been recorded for virtually all major animal phyla in response to environmental stress. The extent of depression is usually measured as the ratio of the depressed metabolic rate to the normal resting metabolic rate. Metabolic rate is sometimes only depressed to approx. 80% of the resting value (i.e. a depression of approx. 20% of resting); it is more commonly 5‐40 % of resting (i.e. a depression of approx. 60‐95% of resting); extreme depression is to 1% or less of resting, or even to an unmeasurably low metabolic rate (i.e. a depression of approx. 99‐100% of resting). We have examined the resting and depressed metabolic rate of animals as a function of their body mass, corrected to a common temperature. This allometric approach allows ready comparison of the absolute level of both resting and depressed metabolic rate for various animals, and suggests three general patterns of metabolic depression. Firstly, metabolic depression to approx. 0.05‐0.4 of rest is a common and remarkably consistent pattern for various non‐cryptobiotic animals (e.g. molluscs, earthworms, crustaceans, fishes, amphibians, reptiles). This extent of metabolic depression is typical for dormant animals with ‘intrinsic’ depression, i.e. reduction of metabolic rate in anticipation of adverse environmental conditions but without substantial changes to their ionic or osmotic status, or state of body water. Some of these types of animal are able to survive anoxia for limited periods, and their anaerobic metabolic depression is also to approx. 0.05‐0.4 of resting. Metabolic depression to much less than 0.2 of resting is apparent for some ‘resting’, ‘over‐wintering’ or diapaused eggs of these animals, but this can be due to early developmental arrest so that the egg has a low ‘metabolic mass’ of developed tissue (compared to the overall mass of the egg) with no metabolic depression, rather than having metabolic depression of the entire cell mass. A profound decrease in metabolic rate occurs in hibernating (or aestivating) mammals and birds during torpor, e.g. to less than 0.01 of pre‐torpor metabolic rate, but there is often no intrinsic metabolic depression in addition to that reduction in metabolic rate due to readjustment of thermoregulatory control and a decrease in body temperature with a concommitant Q 10 effect. There may be a modest intrinsic metabolic depression for some species in shallow torpor (to approx. 0.86) and a more substantial metabolic depression for deep torpor (approx. 0.6), but any energy saving accruing from this intrinsic depression is small compared to the substantial savings accrued from the readjustment of thermoregulation and the Q 10 effect. Secondly, a more extreme pattern of metabolic depression (to < 0.05 of rest) is evident for cryptobiotic animals. For these animals there is a profound change in their internal environment‐for anoxybiotic animals there is an absence of oxygen and for osmobiotic, anhydrobiotic or cryobiotic animals there is an alteration of the ionic/osmotic balance or state of body water. Some normally aerobic animals can tolerate anoxia for considerable periods, and their duration of tolerance is inversely related to their magnitude of metabolic depression; anaerobic metabolic rate can be less than 0.005 of resting. The metabolic rate of anhydrobiotic animals is often so low as to be unmeasurable, if not zero. Thus, anhydrobiosis is the ultimate strategy for eggs or other stages of the life cycle to survive extended periods of environmental stress. Thirdly, a pattern of absence of metabolism when normally hydrated (as opposed to anhydrobiotic or cryobiotic) is apparently unique to diapaused eggs of the brine‐shrimp ( Artemia spp., an anostracan crustacean) during anoxia. The apparent complete metabolic depression of anoxic yet hydrated cysts (and extreme metabolic depression of normoxic, hypoxic, or osmobiotic, yet hydrated cysts), is an obvious exception to the above patterns. In searching for biochemical mechanisms for metabolic depression, it is clear that there are five general characteristics at the molecular level of cells which have a depressed metabolism; a decrease in pH, the presence of latent mRNA, a change in protein phosphorylation state, the maintenance of one particular energy‐utilizing process (ion pumping), and the down‐regulation of another (protein synthesis). Oxygen sensing is now the focus of intense investigation and obviously plays an important role in many aspects of cell biology. Recent studies show that oxygen sensing is involved in metabolic depression and research is now being directed towards characterising the proteins and mechanisms that comprise this response. As more data accumulate, oxygen sensing as a mechanism will probably become the sixth general characteristic of depressed cells. The majority of studies on these general characteristics of metabolically depressed cells come from members of the most common group of animals that depress metabolism, those non‐cryptobiotic animals that remain hydrated and depress to 0.05‐0.4 of rest. These biochemical investigations are becoming more molecular and sophisticated, and directed towards defined processes, but as yet no complete mechanism has been delineated. The consistency of the molecular data within this group of animals suggests similar metabolic strategies and mechanisms associated with metabolic depression. The biochemical ‘adaptations’ of anhydrobiotic organisms would seem to be related more to surviving the dramatic reduction in cell water content and its physico‐chemical state, than to molecular mechanisms for lowering metabolic rate. Metabolic depression would seem to be an almost inevitable consequence of their altered hydration state. The unique case of profound metabolic depression of hydrated Artemia spp. cysts under a variety of conditions could reflect unique mechanisms at the molecular level. However, the available data are not consistent with this possibility (with the exception of a uniquely large decrease in ATP concentration of depressed, hydrated Artemia spp. cysts) and the question remains: how do cells of anoxic and hydrated Artemia spp. differ from anoxic goldfish or turtle cells, enabling them so much more completely to depress their metabolism?