z-logo
Premium
H. A. GLEASON'S ‘INDIVIDUALISTIC CONCEPT’ AND THEORY OF ANIMAL COMMUNITIES: A CONTINUING CONTROVERSY
Author(s) -
McINTOSH ROBERT P.
Publication year - 1995
Publication title -
biological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.993
H-Index - 165
eISSN - 1469-185X
pISSN - 1464-7931
DOI - 10.1111/j.1469-185x.1995.tb01069.x
Subject(s) - individualism , terminology , credence , ecology , organism , population , natural (archaeology) , sociology , epistemology , biology , environmental ethics , political science , law , philosophy , demography , paleontology , statistics , linguistics , mathematics
Summary A tradition of natural history and of the lore of early twentieth‐century ecology was that organisms lived together and interacted to form natural entities or communities. Before there was a recognizable science of ecology, Mobius (1877) had provided a name ‘biocoenosis’ for such entities. This concept persisted in the early decades of ecological science; at an extreme it was maintained that the community had integrating capabilities and organization like those of an individual organism, hence the term organismic community. In the 1950s‐ 1970s an alternative individualist concept, derived from the ideas of H. A. Gleason (1939), gained credence which held that communities were largely a coincidence of individualistic species characteristics, continuously varying environments and different probabilities of a species arriving on a given site. During the same period, however, a body of population based theory of animal communities became dominant which perpetuated the idea of patterns in nature based on biotic interactions among species resulting in integrated communities. This theory introduced an extended terminology and mathematical models to explain the organization of species into groups of compatible species governed by rules. In the late 1970s the premises and methods of the theory came under attack and a vigorous debate ensued. The alternatives proposed were, at an extreme, null models of random aggregations of species or stochastic, individualistic aggregations of species, sensu Gleason. Extended research and debate ensued during the 1980s resulting in an explosion of studies of animal communities and a plethora of symposia and volumes of collected works concerning the nature of animal communities. The inherent complexity of communities and the traditional differences among animal ecologists about how they should be defined and delimited, at what scale of taxa, space and time to study them, and appropriate methods of study and analysis have resulted in extended and as yet inconclusive discussions. Recent differences and discussions are considered under five general categories, evolution and community theory, individualistic concept, community definition, questions from community ecology and empirical studies. Communities are seen by some ecologists as entities of coevolving species and, in any case, it is necessary to integrate evolutionary ideas with the varied concepts of community. The individualistic concept of community, as a relative latecomer to discussions of animal community, is sometimes misconstrued as holding that communities are random assemblages of organisms without biotic interactions among species. Nevertheless, it has increasingly been accepted as supported by studies of diverse taxa and habitats. However, many other ecologists continue to argue for integrated, biotically controlled and evolved communities. Among the major difficulties of addressing the problems of community are problems of definition and terminology. One commentator noted that community ecology may be unique in the sciences because there is no consensus definition of community. One consequence of the lack of consensus definition is evident in the varied and diffuse questions posed in studies of community. Some critics of community ecology fault it for posing unanswerable questions. Recent empirical studies include various assessments about community ranging from deterministic, integrated and organismic to individualistic with various suggestions for compromise. The early emphasis on birds in studies of animal communities has expanded to obviate the argument that any position is constrained by the taxon studied. Insects, in general, are more prone to give rise to interpretation of a nonintegrated community. Parasite community studies have given rise to some distinctive categories and terminology. However, consensus is not achieved either within or among taxonomic groups or habitat groups. The extreme heterogeneity and complexity of communities (and of ecologists) has produced extended discussions of how to approach such multidimensional complexity. These discussions often turn on polarized positions of reductionism and experiment versus holism. Proponents of reductionism asserted that natural communities cannot be understood or their structure and organization predicted until experimental communities, or models thereof, are understood. Holists insisted that the inherent complexity and variability of communities cannot be elucidated in simplified experimental communities or in models. A more recent trend has urged pluralism, or, at least, mutual respect and dialogue, which are sometimes lacking, between proponents of these divergent approaches to communities. Recent work perpetuates the original dichotomy between integrated organismic community concept and individualistic non‐integrated concept. The hope for a rule‐governed community has extended to metarules and a new theory of community as divided into core species and satellite species is called into question. The problems of distinguishing between determinism and chance effects in community organization continue and the lost or fading hope of a general theory of community is revived in a search for rules that govern their assembly.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here