Premium
Physiological Responses Of Birds To Flight And Running
Author(s) -
BRACKENBURY JOHN
Publication year - 1984
Publication title -
biological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.993
H-Index - 165
eISSN - 1469-185X
pISSN - 1464-7931
DOI - 10.1111/j.1469-185x.1984.tb00414.x
Subject(s) - hyperventilation , cardiac output , ventilation (architecture) , zoology , energy expenditure , respiration , chemistry , medicine , biology , endocrinology , anatomy , physics , blood pressure , meteorology
Summary 1. The energy required for sustained physical activity in flying and running birds is obtained from fatty acids mobilized from adipose stores under the influence of hormones. There is some evidence that glucagon, insulin and growth hormone may be involved in this process. 2. Energy expenditure can increase up to 14 times and 12 times resting values in flying and running birds, respectively. Energy expenditure varies only slightly over the normal range of flight speeds in individual species, but in running birds there is a linear correlation between oxygen consumption and speed. The slope of this relationship is an inverse function of body weight and indicates the energy cost of transport in ml O 2 .kg ‐1 .m ‐1 . 3. Increased oxygen demands by the working muscles are met by increased ventilation and circulation. Increased oxygen delivery by the blood is achieved by rises in cardiac output and oxygen extraction. Cardiac stroke volume changes relatively little and the increased cardiac output results mainly from an increase in heart rate. Regional blood distribution during exercise may be determined not only by the demands of the locomotory muscles but also by the need to increase heat loss from the skin and respiratory tract. 4. Ventilatory movements during flight are frequently synchronized in a I:I fashion with wing movements. Increased ventilation during flight and running may be stimulated, not only by the need for increased gas exchange, but also in order to raise heat loss by respiratory evaporation. Thermal hyperventilation carries a risk of CO, washout from the lungs and consequent blood alkalosis. The risk is minimized in some species by appropriate alterations in the rate and depth of breathing, which help to confine excess ventilation to the respiratory dead space. 5. Metabolic heat produced during exercise is either lost from the respiratory linings and the skin, or stored by the body with a resultant rise in body temperature. Changes in peripheral blood perfusion and active regulation of the feathers may assist cutaneous heat loss. Respiratory evaporation usually accounts for less than 30% of the total heat loss, even at high air temperatures, and becomes progressively less efficient at higher exercise intensities. At high air temperatures and high exercise intensities, most of the metabolic heat is stored, and exercise duration is limited as the body temperature approaches the upper lethal limit.