z-logo
Premium
A Flexible Model for Association Analysis in Sibships with Missing Genotype Data
Author(s) -
Dudbridge Frank,
Holmans Peter A.,
Wilson Scott G.
Publication year - 2011
Publication title -
annals of human genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.537
H-Index - 77
eISSN - 1469-1809
pISSN - 0003-4800
DOI - 10.1111/j.1469-1809.2010.00636.x
Subject(s) - missing data , covariate , haplotype , population stratification , allele , linkage (software) , genetic association , statistics , genotype , mathematics , genetics , computer science , biology , single nucleotide polymorphism , gene
Summary A common design in family‐based association studies consists of siblings without parents. Several methods have been proposed for analysis of sibship data, but they mostly do not allow for missing data, such as haplotype phase or untyped markers. On the other hand, general methods for nuclear families with missing data are computationally intensive when applied to sibships, since every family has missing parents that could have many possible genotypes. We propose a computationally efficient model for sibships by conditioning on the sets of alleles transmitted into the sibship by each parent. This means that the likelihood can be written only in terms of transmitted alleles and we do not have to sum over all possible untransmitted alleles when they cannot be deduced from the siblings. The model naturally accommodates missing data and admits standard theory of estimation, testing, and inclusion of covariates. Our model is quite robust to population stratification and can test for association in the presence of linkage. We show that our model has similar power to FBAT for single marker analysis and improved power for haplotype analysis. Compared to summing over all possible untransmitted alleles, we achieve similar power with considerable reductions in computation time.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here