z-logo
Premium
A Novel Polymorphic AP‐1 Binding Element of the GFAP Promoter is Associated with Different Allelic Transcriptional Activities
Author(s) -
Bachetti Tiziana,
Di Zanni Eleonora,
Lantieri Francesca,
Caroli Francesco,
Regis Stefano,
Filocamo Mirella,
Rainero Innocenzo,
Gallone Salvatore,
Cilia Roberto,
Romano Silvia,
Savoiardo Mario,
Pareyson Davide,
Biancheri Roberta,
Ravazzolo Roberto,
Ceccherini Isabella
Publication year - 2010
Publication title -
annals of human genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.537
H-Index - 77
eISSN - 1469-1809
pISSN - 0003-4800
DOI - 10.1111/j.1469-1809.2010.00614.x
Subject(s) - biology , genetics , glial fibrillary acidic protein , allele , gene , single nucleotide polymorphism , transcription factor , locus (genetics) , promoter , microbiology and biotechnology , gene expression , genotype , immunohistochemistry , immunology
Summary The Glial Fibrillary Acidic Protein ( GFAP ) gene encodes a cytoskeletal protein belonging to the intermediate filament family whose expression is considered as a marker of astrocytes differentiation. GFAP expression, shown to be upregulated as a consequence of brain gliosis, depends on hormones, growth factors, cytokine, and transcription factors and, among these latters, activator protein 1 (AP‐1) has been demonstrated to play a crucial role. In this study, we have focused on a 2.2 kb sequence of the regulatory region located upstream of the GFAP gene, searching in a panel of control individuals for single‐nucleotide polymorphisms (SNPs) that could modulate GFAP transcription. Among four SNPs of the GFAP promoter whose alleles have been predicted by in silico analysis to induce differences in the pattern of binding transcription factors, we have identified a new AP‐1 binding site lying at −250 bp upstream from the GFAP transcriptional start site. The two alleles of this polymorphic locus have shown to bind the AP‐1 complex to different extents, thus promoting variable transcriptional activities of the GFAP promoter. Therefore, these SNP alleles may, among others, mediate the effects of GFAP mutations, thus explaining the phenotypic heterogeneity of Alexander disease.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here