Premium
Knowledge acquisition in vague objective information systems based on rough sets
Author(s) -
Feng Lin,
Wang GuoYin,
Li XinXin
Publication year - 2010
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/j.1468-0394.2010.00512.x
Subject(s) - rough set , computer science , vague set , data mining , reduction (mathematics) , artificial intelligence , dominance based rough set approach , fuzzy set , mathematics , fuzzy logic , geometry
The growing volume of vague information poses interesting challenges and calls for new theories, techniques and tools for analysis of vague data sets. In this paper, we study how to extract knowledge from vague objective information systems (VOISs) based on rough sets theory. We first introduce the basic notion termed rough vague sets by combining rough sets theory and vague sets theory. By using the rough vague lower approximation distribution in the VOIS, the concept of attribute reduction is introduced. Then, we develop an algorithm based on a discernibility matrix to compute all the attribute reductions. Finally, a viable approach for extracting decision rules from the VOIS is proposed. An example is also presented to illustrate the application of the proposed theories and approaches in handling medical diagnosis problems.