Premium
A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements
Author(s) -
Weinstein Jonathan,
Yildiz Muhamet
Publication year - 2007
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.1111/j.1468-0262.2006.00751.x
Subject(s) - rationalizability , mathematical economics , outcome (game theory) , mathematics , stochastic game , set (abstract data type) , computer science , nash equilibrium , programming language
Rationalizability is a central solution concept of game theory. Economic models often have many rationalizable outcomes, motivating economists to use refinements of rationalizability, including equilibrium refinements. In this paper we try to achieve a general understanding of when this multiplicity occurs and how one should deal with it. Assuming that the set of possible payoff functions and belief structures is sufficiently rich, we establish a revealing structure of the correspondence of beliefs to sets of rationalizable outcomes. We show that, for any rationalizable action a of any type, we can perturb the beliefs of the type in such a way that a is uniquely rationalizable for the new type. This unique outcome will be robust to further small changes. When multiplicity occurs, then we are in a “knife‐edge” case, where the unique rationalizable outcome changes, sandwiched between open sets of types where each of the rationalizable actions is uniquely rationalizable. As an immediate application of this result, we characterize, for any refinement of rationalizability, the predictions that are robust to small misspecifications of interim beliefs. These are only those predictions that are true for all rationalizable strategies, that is, the predictions that could have been made without the refinement.