z-logo
Premium
Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure
Author(s) -
Angrist Joshua,
Chernozhukov Victor,
FernándezVal Iván
Publication year - 2006
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.1111/j.1468-0262.2006.00671.x
Subject(s) - mathematics , quantile , quantile regression , ordinary least squares , conditional expectation , econometrics , conditional probability distribution , statistics , quantile function , linear regression , covariate , probability density function , cumulative distribution function
Quantile regression (QR) fits a linear model for conditional quantiles just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean‐squared error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR minimizes a weighted mean‐squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile regression concept, similar to the relationship between partial regression and OLS. We also present asymptotic theory for the QR process under misspecification of the conditional quantile function. The approximation properties of QR are illustrated using wage data from the U.S. census. These results point to major changes in inequality from 1990 to 2000.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here