Premium
Disproving Causal Relationships Using Observational Data *
Author(s) -
Bryant Henry L.,
Bessler David A.,
Haigh Michael S.
Publication year - 2009
Publication title -
oxford bulletin of economics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.131
H-Index - 73
eISSN - 1468-0084
pISSN - 0305-9049
DOI - 10.1111/j.1468-0084.2008.00539.x
Subject(s) - observational study , econometrics , causal model , statistical hypothesis testing , variable (mathematics) , statistics , monte carlo method , mathematics , psychology , mathematical analysis
Economic theory is replete with causal hypotheses that are scarcely tested because economists are generally constrained to work with observational data. We describe a method for testing a hypothesis that one observed random variable causes another. Contingent on a sufficiently strong correspondence between the two variables, an appropriately related third variable can be employed for the test. The logic of the procedure naturally suggests strong and weak grounds for rejecting the causal hypothesis. Monte Carlo results suggest that weakly grounded rejections are unreliable for small samples, but reasonably reliable for large samples. Strongly grounded rejections are highly reliable, even for small samples.