z-logo
Premium
Quantifying the uncertainty in change points
Author(s) -
Nam Christopher F. H.,
Aston John A. D.,
Johansen Adam M.
Publication year - 2012
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2011.00777.x
Subject(s) - markov chain monte carlo , point estimation , uncertainty quantification , mathematics , markov chain , bayesian probability , posterior probability , sequence (biology) , algorithm , monte carlo method , change detection , computer science , mathematical optimization , statistics , artificial intelligence , genetics , biology
Quantifying the uncertainty in the location and nature of change points in time series is important in a variety of applications. Many existing methods for estimation of the number and location of change points fail to capture fully or explicitly the uncertainty regarding these estimates, whilst others require explicit simulation of large vectors of dependent latent variables. This article proposes methodology for approximating the full posterior distribution of various change point characteristics in the presence of parameter uncertainty. The methodology combines recent work on evaluation of exact change point distributions conditional on model parameters via finite Markov chain imbedding in a hidden Markov model setting, and accounting for parameter uncertainty and estimation via Bayesian modelling and sequential Monte Carlo. The combination of the two leads to a flexible and computationally efficient procedure, which does not require estimates of the underlying state sequence. We illustrate that good estimation of the posterior distributions of change point characteristics is provided for simulated data and functional magnetic resonance imaging data. We use the methodology to show that the modelling of relevant physical properties of the scanner can influence detection of change points and their uncertainty.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here