Premium
A new frequency domain approach of testing for covariance stationarity and for periodic stationarity in multivariate linear processes
Author(s) -
Jentsch Carsten
Publication year - 2012
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2011.00750.x
Subject(s) - mathematics , test statistic , covariance , stationary process , statistic , multivariate statistics , covariance matrix , series (stratigraphy) , statistics , statistical hypothesis testing , econometrics , paleontology , biology
In modelling seasonal time series data, periodically (non‐)stationary processes have become quite popular over the last years and it is well known that these models may be represented as higher‐dimensional stationary models. In this article, it is shown that the spectral density matrix of this higher‐dimensional process exhibits a certain structure if and only if the observed process is covariance stationary. By exploiting this relationship, a new L 2 ‐type test statistic is proposed for testing whether a multivariate periodically stationary linear process is even covariance stationary. Moreover, it is shown that this test may also be used to test for periodic stationarity. The asymptotic normal distribution of the test statistic under the null is derived and the test is shown to have an omnibus property. The article concludes with a simulation study, where the small sample performance of the test procedure is improved by using a suitable bootstrap scheme.