z-logo
Premium
Estimation in nonstationary random coefficient autoregressive models
Author(s) -
Berkes István,
Horváth Lajos,
Ling Shiqing
Publication year - 2009
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2009.00615.x
Subject(s) - mathematics , autoregressive model , estimator , maximum likelihood , statistics , unit root , asymptotic distribution , star model , estimation theory , autoregressive integrated moving average , time series
.  We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model X k  = ( ϕ  +  b k ) X k −1  +  e k , where ( ϕ ,  ω 2 ,  σ 2 ) is the parameter of the process, , . We consider a nonstationary RCA process satisfying E  log | ϕ  +  b 0 | ≥ 0 and show that σ 2 cannot be estimated by the quasi‐maximum likelihood method. The asymptotic normality of the quasi‐maximum likelihood estimator for ( ϕ ,  ω 2 ) is proven so that the unit root problem does not exist in the RCA model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here