z-logo
Premium
Evaluating Specification Tests for Markov‐Switching Time‐Series Models
Author(s) -
Smith Daniel R.
Publication year - 2008
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2008.00575.x
Subject(s) - heteroscedasticity , autocorrelation , mathematics , autoregressive conditional heteroskedasticity , autoregressive model , markov chain , residual , econometrics , series (stratigraphy) , statistics , algorithm , volatility (finance) , paleontology , biology
.  We evaluate the performance of several specification tests for Markov regime‐switching time‐series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard‐normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual‐based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov‐switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here