Premium
The Periodogram of fractional processes 1
Author(s) -
Velasco Carlos
Publication year - 2007
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2006.00527.x
Subject(s) - mathematics , series (stratigraphy) , stationary process , estimator , fourier transform , range (aeronautics) , mathematical analysis , statistics , paleontology , materials science , composite material , biology
. We analyse asymptotic properties of the discrete Fourier transform and the periodogram of time series obtained through (truncated) linear filtering of stationary processes. The class of filters contains the fractional differencing operator and its coefficients decay at an algebraic rate, implying long‐range‐dependent properties for the filtered processes when the degree of integration α is positive. These include fractional time series which are nonstationary for any value of the memory parameter ( α ≠ 0) and possibly nonstationary trending ( α ≥ 0.5). We consider both fractional differencing or integration of weakly dependent and long‐memory stationary time series. The results obtained for the moments of the Fourier transform and the periodogram at Fourier frequencies in a degenerating band around the origin are weaker compared with the stationary nontruncated case for α > 0, but sufficient for the analysis of parametric and semiparametric memory estimates. They are applied to the study of the properties of the log‐periodogram regression estimate of the memory parameter α for Gaussian processes, for which asymptotic normality could not be showed using previous results. However, only consistency can be showed for the trending cases, 0.5 ≤ α < 1. Several detrending and initialization mechanisms are studied and only local conditions on spectral densities of stationary input series and transfer functions of filters are assumed.