z-logo
Premium
Maximum Likelihood Estimation for a First‐Order Bifurcating Autoregressive Process with Exponential Errors
Author(s) -
Zhou J.,
Basawa I. V.
Publication year - 2005
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.2005.00440.x
Subject(s) - autoregressive model , mathematics , star model , setar , estimator , autoregressive integrated moving average , exponential function , normalization (sociology) , nonlinear autoregressive exogenous model , maximum likelihood , estimation theory , statistics , mathematical analysis , time series , sociology , anthropology
.  Exact and asymptotic distributions of the maximum likelihood estimator of the autoregressive parameter in a first‐order bifurcating autoregressive process with exponential innovations are derived. The limit distributions for the stationary, critical and explosive cases are unified via a single pivot using a random normalization. The pivot is shown to be asymptotically exponential for all values of the autoregressive parameter.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here