z-logo
Premium
LAG WINDOW ESTIMATION OF THE DEGREE OF DIFFERENCING IN FRACTIONALLY INTEGRATED TIME SERIES MODELS
Author(s) -
Chen Gemai,
Abraham Bovas,
Peiris Shelton
Publication year - 1994
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.1994.tb00205.x
Subject(s) - estimator , autoregressive fractionally integrated moving average , mathematics , autoregressive model , series (stratigraphy) , lag , star model , degree (music) , window (computing) , statistics , econometrics , range (aeronautics) , time series , autoregressive integrated moving average , long memory , computer science , volatility (finance) , paleontology , computer network , physics , materials science , acoustics , composite material , biology , operating system
. In this paper we consider the estimation of the degree of differencing d in the fractionally integrated autoregressive moving‐average time series model ARFIMA ( p, d, q ). Using lag window spectral density estimators we develop a regression type estimator of d which is easy to calculate and does not require prior knowledge of p and q. Some large sample properties of the estimator are studied and the performance of the estimator for small samples is investigated using the simulation method for a range of commonly used lag windows. Some practical recommendations on the choice of lag windows and the choice of the window parameters are provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here