z-logo
Premium
SEMIPARAMETRIC TIME SERIES REGRESSION
Author(s) -
Truong Young K.,
Stone Charles J.
Publication year - 1994
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/j.1467-9892.1994.tb00202.x
Subject(s) - mathematics , autoregressive model , bivariate analysis , series (stratigraphy) , realization (probability) , semiparametric regression , nonparametric regression , regression function , nonparametric statistics , moving average model , function (biology) , semiparametric model , parametric statistics , regression , stationary process , statistics , time series , component (thermodynamics) , regression analysis , autoregressive integrated moving average , paleontology , physics , evolutionary biology , biology , thermodynamics
Abstract. Let ( X i , Y i ), i = 0, pL 1,… denote a bivariate stationary time series with X i being R d ‐valued and Y i being real‐valued. We consider the regression model Y i =θ( X i ) + Z i , where θ(·) is an unknown function and Z i is an autoregressive process. Given a realization of length n , we examine the problem of estimating the nonparametric function θ(·) and the parametric component Z i . Under appropriate regularity conditions, it is shown that both components can be optimally estimated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here