z-logo
Premium
Diagnostics for multivariate imputations
Author(s) -
Abayomi Kobi,
Gelman Andrew,
Levy Marc
Publication year - 2008
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.1111/j.1467-9876.2007.00613.x
Subject(s) - multivariate statistics , imputation (statistics) , missing data , statistics , regression , linear regression , econometrics , bayesian multivariate linear regression , environmental data , computer science , mathematics , political science , law
Summary.  We consider three sorts of diagnostics for random imputations: displays of the completed data, which are intended to reveal unusual patterns that might suggest problems with the imputations, comparisons of the distributions of observed and imputed data values and checks of the fit of observed data to the model that is used to create the imputations. We formulate these methods in terms of sequential regression multivariate imputation, which is an iterative procedure in which the missing values of each variable are randomly imputed conditionally on all the other variables in the completed data matrix. We also consider a recalibration procedure for sequential regression imputations. We apply these methods to the 2002 environmental sustainability index, which is a linear aggregation of 64 environmental variables on 142 countries.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here