Premium
Estimating percentile‐specific treatment effects in counterfactual models: a case‐study of micronutrient supplementation, birth weight and infant mortality
Author(s) -
Dominici Francesca,
Zeger Scott L.,
Parmigiani Giovanni,
Katz Joanne,
Christian Parul
Publication year - 2006
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.1111/j.1467-9876.2006.00533.x
Subject(s) - percentile , low birth weight , medicine , counterfactual thinking , birth weight , average treatment effect , population , infant mortality , pediatrics , causal inference , demography , statistics , psychology , propensity score matching , mathematics , pregnancy , environmental health , surgery , biology , social psychology , genetics , pathology , sociology
Summary. Clinical trials of micronutrient supplementation are aimed at reducing the risk of infant mortality by increasing birth weight. Because infant mortality is greatest among the low birth weight (LBW) infants (2500 g or under), an effective intervention increases the birth weight among the smallest babies. The paper defines population and counterfactual parameters for estimating the treatment effects on birth weight and on survival as functions of the percentiles of the birth weight distribution. We use a Bayesian approach with data augmentation to approximate the posterior distributions of the parameters, taking into account uncertainty that is associated with the imputation of the counterfactuals. This approach is particularly suitable for exploring the sensitivity of the results to unverifiable modelling assumptions and other prior beliefs. We estimate that the average causal effect of the treatment on birth weight is 72 g (95% posterior regions 33–110 g) and that this causal effect is largest among the LBW infants. Posterior inferences about average causal effects of the treatment on birth weight are robust to modelling assumptions. However, inferences about causal effects for babies at the tails of the birth weight distribution can be highly sensitive to the unverifiable assumption about the correl‐ation between the observed and the counterfactuals birth weights. Among the LBW infants who have a large causal effect of the treatment on birth weight, we estimate that a baby receiving the treatment has 5% less chance of death than if the same baby had received the control. Among the LBW infants, we found weak evidence supporting an additional beneficial effect of the treatment on mortality independent of birth weight.