z-logo
Premium
Penalized classification using Fisher's linear discriminant
Author(s) -
Witten Daniela M.,
Tibshirani Robert
Publication year - 2011
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/j.1467-9868.2011.00783.x
Subject(s) - linear discriminant analysis , optimal discriminant analysis , kernel fisher discriminant analysis , interpretability , discriminant , mathematics , pattern recognition (psychology) , artificial intelligence , fisher kernel , multiple discriminant analysis , covariance , covariance matrix , computer science , statistics , facial recognition system
Summary.  We consider the supervised classification setting, in which the data consist of p features measured on n observations, each of which belongs to one of K classes. Linear discriminant analysis (LDA) is a classical method for this problem. However, in the high dimensional setting where p ≫ n , LDA is not appropriate for two reasons. First, the standard estimate for the within‐class covariance matrix is singular, and so the usual discriminant rule cannot be applied. Second, when p is large, it is difficult to interpret the classification rule that is obtained from LDA, since it involves all p features. We propose penalized LDA , which is a general approach for penalizing the discriminant vectors in Fisher's discriminant problem in a way that leads to greater interpretability. The discriminant problem is not convex, so we use a minorization–maximization approach to optimize it efficiently when convex penalties are applied to the discriminant vectors. In particular, we consider the use of L 1 and fused lasso penalties. Our proposal is equivalent to recasting Fisher's discriminant problem as a biconvex problem. We evaluate the performances of the resulting methods on a simulation study, and on three gene expression data sets. We also survey past methods for extending LDA to the high dimensional setting and explore their relationships with our proposal.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here