z-logo
Premium
Hybrid Dirichlet mixture models for functional data
Author(s) -
Petrone Sonia,
Guindani Michele,
Gelfand Alan E.
Publication year - 2009
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/j.1467-9868.2009.00708.x
Subject(s) - dirichlet distribution , mathematics , mixture model , dirichlet process , cluster analysis , bayesian probability , dimension (graph theory) , set (abstract data type) , prior probability , algorithm , computer science , statistics , mathematical analysis , combinatorics , programming language , boundary value problem
Summary.  In functional data analysis, curves or surfaces are observed, up to measurement error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are homogeneous, except perhaps for individual‐specific regions that provide heterogeneous behaviour (e.g. ‘damaged’ areas of irregular shape on an otherwise smooth surface). Motivated by applications with functional data of this nature, we propose a Bayesian mixture model, with the aim of dimension reduction, by representing the sample of n curves through a smaller set of canonical curves. We propose a novel prior on the space of probability measures for a random curve which extends the popular Dirichlet priors by allowing local clustering: non‐homogeneous portions of a curve can be allocated to different clusters and the n individual curves can be represented as recombinations (hybrids) of a few canonical curves. More precisely, the prior proposed envisions a conceptual hidden factor with k ‐levels that acts locally on each curve. We discuss several models incorporating this prior and illustrate its performance with simulated and real data sets. We examine theoretical properties of the proposed finite hybrid Dirichlet mixtures, specifically, their behaviour as the number of the mixture components goes to ∞ and their connection with Dirichlet process mixtures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here