Premium
Statistical inference for discretely observed Markov jump processes
Author(s) -
Bladt Mogens,
Sørensen Michael
Publication year - 2005
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/j.1467-9868.2005.00508.x
Subject(s) - markov chain monte carlo , likelihood function , mathematics , reversible jump markov chain monte carlo , markov chain , inference , estimator , monte carlo method , algorithm , computer science , mathematical optimization , statistics , estimation theory , artificial intelligence
Summary. Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies.